Quantcast
Channel: Cannot understand calculations (Taylor's Theorem) - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 4

Answer by José Carlos Santos for Cannot understand calculations (Taylor's Theorem)

$
0
0

You have that $F(t)$ is a constant ($f(x)$) plus$$-f(t)-(x-t)f'(t)-\frac{(x-t)^2}2f''(t)-\cdots-\frac{(x-t)^n}{n!}f^{(n)}(t).$$Forget the constant; if you differentiate it, you get $0$. Then:

  • if you differentiate $-f(t)$, you get $-f'(t)$;
  • if you differentiate $-(x-t)f'(t)$, you get $f'(t)-(x-t)f''(t)$;
  • if you differentiate $-\frac{(x-t)^2}{2}f''(t)$, you get $(x-t)f''(t)-\frac{(x-t)^2}2f^{(3)}(t)$;
  • $\vdots$
  • if you differentiate $-\frac{(x-t)^n}{n!}f^{(n)}(t)(t)$, you get $\frac{(x-t)^{n-1}}{(n-1)!}f^{(n)}(t)-\frac{(x-t)^n}{n!}f^{(n+1)}(t)$.

Now, sum up all of this. Everything gets cancelled, except for $-\frac{(x-t)^n}{n!}f^{(n+1)}(t)$.


Viewing all articles
Browse latest Browse all 4

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>